Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle.

نویسندگان

  • R K Birla
  • Y C Huang
  • R G Dennis
چکیده

OBJECTIVE In this study, we describe a novel bioreactor system to deliver controlled stretch protocols to bioengineered heart muscle (BEHM) constructs. Our primary objective was to evaluate the effect of mechanical stretch on the contractile properties of three-dimensional cardiac constructs in vitro. METHODS BEHMs were formed by culturing primary neonatal cardiac myocytes in a fibrin gel using a method previously developed in our laboratory. A custom bioreactor system was designed using SolidWorks (Concord, MA) and structural components were manufactured using fusion deposition modeling. We utilized the bioreactor to evaluate the effect of 2-, 6-, and 24-hour stretch protocols on the stretch-induced changes in contractile function of BEHMs. RESULTS We were able to demonstrate compatibility of the bioreactor system with BEHMs and were able to stretch all the constructs with zero incidence of failure. We found that loading the constructs for 2, 6, and 24 hours during a 24-hour period using a stretch protocol of 1 Hz, 10% stretch did not result in any significant change in the active force, specific force, pacing characteristics, and morphological features. CONCLUSIONS In this study, we demonstrate compatibility of a novel bioreactor system with BEHMs and the stability of the BEHMs in response to stretch protocols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manufacturing a Biomimetic Biorecator in Cardiac Tissue Engineering

Introduction: The direct approach of cardiac tissue engineering is to mimic the natural tissue of heart, considering the significant role of scaffolding and mechanical simulation.  Methods: To achieve this purpose, a composite Polycaprolactone (PCL)/Gelatin electrospun scaffold with a ratio of 70:30 and with the most similarities to the cardiac extracellular matrix was fabricated with aligned ...

متن کامل

A novel bioreactor for the dynamic stimulation and mechanical evaluation of multiple tissue-engineered constructs.

Systematic advancements in the field of musculoskeletal tissue engineering require clear communication about the mechanical environments that promote functional tissue growth. To support the rapid discovery of effective mechanostimulation protocols, this study developed and validated a mechanoactive transduction and evaluation bioreactor (MATE). The MATE provides independent and consistent mech...

متن کامل

Deformation-controlled load application in heart valve tissue engineering.

In cardiovascular tissue engineering, mechanical stimulation of tissue-engineered constructs is known to improve tissue properties. During tissue culture, the mechanical properties of the tissue construct change. To impose a predefined deformation protocol and to avoid negative effects of excessive strain, it is desired to monitor and control deformations during load application. In a previous ...

متن کامل

A novel bioreactor for mechanobiological studies of engineered heart valve tissue formation under pulmonary arterial physiological flow conditions.

The ability to replicate physiological hemodynamic conditions during in vitro tissue development has been recognized as an important aspect in the development and in vitro assessment of engineered heart valve tissues. Moreover, we have demonstrated that studies aiming to understand mechanical conditioning require separation of the major heart valve deformation loading modes: flow, stretch, and ...

متن کامل

Dynamic Flexure Independently Stimulates Engineered Heart Valve Tissue Development

The independent effect of dynamic flexure on the development of tissue engineered heart valves (TEHV) was investigated. Engineered heart valve tissues were constructed by seeding ovine smooth muscle cells onto rectangular scaffold strips and incubating the resultant constructs in a dynamic flexure bioreactor or under static conditions for three weeks. Tests indicated a trend of higher effective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering

دوره 13 9  شماره 

صفحات  -

تاریخ انتشار 2007